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Course outline

* 1. Introduction

Introduction to protein analysis and proteomics; Reminders in mass spectrometry; Why proteomics and mass spectrometry?; lonization
sources, analysers, and detectors used in proteomics; Latest generation of mass spectrometers used in proteomics

* 2. Proteomic strategy and workflows

Bottom-up versus top-down strategies; Data-dependent acquisition (DDA) and data-independent acquisition (DIA) approaches; Sample
preparation

* 3. Separations techniques in proteomics

Gel electrophoresis; Isoelectric focusing; Liquid chromatography (RP, IEX)

* 4. Quantitative proteomic workflows

Label-free methods; Labelling-based techniques; Other quantitative techniques

* 5. Proteomic bioinformatics

Databases; Identification of protein; Quantification of proteins; Bioinformatics tools; Practical examples
* 6. Applications to biology and clinical research

What strategy?; Experimental design; Biomarker discovery; Industrialized and population proteomics; Forensics; Targeted mass
spectrometry-based approaches; Other biological applications of mass sEectromefcry; Advanced innovations (single-cells, 4D
proteomics, multi-omics) and emerging technologies; Limitations and ethical consideration; Lab visit



Course outline

* 4, Quantitative proteomic workflows

Label-free methods; Labelling-based techniques; Other quantitative
techniques



Mass spectrometry is not inherently quantitative
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But we need to compare proteomes quantitatively and therefore, methodologies have
been implemented to turn MS-based proteomics quantitative
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Protein relative quantitation with mass spectrometry
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4.1. Label-free methods
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e Spectrum Counting, which counts and
compares the number of fragment spectra
identifying peptides of a given protein

e Total lon Count (TIC), which considers peak
intensities from MS/MS spectra combined with
counting of the spectra

e Precursor lon Intensity, which measures and
compares the mass spectrometric signal
intensity of peptide precursor ions belonging to
a particular protein



spectral counting: quantification based on spectral counting
and concomitant identification (MS/MS)

S p e Ct Fum coun t | N g dynamic range with spectral counting: 3 orders of magnitude

Total spectra

This method uses the sum of all the spectra associated with a specific protein within a sample which includes also
those spectra that are shared with other proteins and is referred to as the Total Spectrum Count
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extracted ion chromatogram (XIC): quantification based on
peptide-ion intensity (MS) and subsequent identification

Precursor ion intensity — wsms)

dynamic range for intensities: 6 orders of magnitude

Average Precursor Intensity
This method takes the geometric mean of the peptide intensity values for a given protein

Total Precursor Intensity
The sum of all distinct intensity values for a protein

Top Three Precursor Intensities

The sum of the three highest peptide intensity values for a protein. If fewer than three peptides have intensity values,
the intensities that are present are summed

iBAQ

iBAQ (Intensity-Based Absolute Quantification) is a popular approach for absolute quantification of proteins.

It is similar in its approach to the emPAl method. iBAQ and similar algorithms are called intensity-based because they
calculate the sum of parent or precursor ion intensities of identified peptides per protein.

iBAQ intensities provide an accurate determination of the relative abundance of all proteins identified in a sample:

iBAQ: Z intensity/#theoretical peptides
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4.2. Labelling-based techniques

a Metabolic stable- Isotope tagging ¢ Stable-isotope incorporation
isotope labelling by chemical reaction via enzyme reaction
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Metabolic labelling: SILAC

Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)

Arginine (*C) Heavy Arginine (e.g. 6 X

Matthias Mann

12C Carbon atoms
replaced by *’C Carbon
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SILAC
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In-vivo SILAC
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Pulsed and dynamic SILAC

Dynamic SILAC
a SILAC b Pulsed SILAC
Control Experiment Control Experiment
(heavy amino acids) (Iightaminoacids) (light amino acids) (light amino acids) time-course | unlabeled +SILAC label B>

mn  o%8 g% %8 g%

(H) Pulse (M) population ﬂmg *DD GDD ODD

0 t1 2 3
Mix
Extract proteins Mnx
l Ms1 H |
’I ‘| Il H|. Il [l

Y
Proteins <@ ?j % @ -m m : .wz. Ml .
l Proteolysis l

00,00 2903 o
. ° 3 00,0°609,
Peptides L0 0 0500 9C
@0 o . o @0.3. o 4 L ' -
l Pre-existing l Newly synthesized g g i
proteins ‘ lr proteins § E !
z o z[ ®° ne ~ =
2l o z Me = g
N L] 5 g
Mass spectrometry Mass spectrometry o ol
time time

DOI: 10.1038/455044a DOI: 10.1074/mcp.M116.063230 -



% Intensity
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Proteolytic labelling
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Chemical labelling: Isobaric tagging

Tandem mass tags (TMTs)
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Isobaric tags for relative and absolute quantitation (iTRAQ)
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Chemical labelling: Isobaric tagging

Differential labelling at
the peptide level
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Chemical labelling: Isobaric tagging - Sample preparation

0
N\)LN,\J\O,D Differential labelling at
126 .
ttttt °  the peptide level

i Reactive
Protein A Reporter Balancer group

00000000 —-D —=oososeses’
— 0000060 . 0000000
Q
s 0000000 — 0000000

00000 Cm
® m

Protein B
0 0 .
Protein A 127((\'“(')\”%0'"
0
ttttt ://www.thermofisher.com Reactive
m Reporter  Balancer  group o

[TXTIYTTTY 000000000 >

LTS * = | . —eeeeee008
™~ 0000000 9900000
o (T - 9000000
Q_ .
£ 0000000 — == 0000000 Peptide + t-he same mass
3 ﬁ @0000 ==eseee, adduct (isobaric tag)

Protein B

. 20
Dayon and Affolter, Expert Rev. Proteomics, 2020, 17, 149-161



Chemical labelling: Isobaric tagging - LC-MS and MS/MS analysis

LC separation
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Tandem mass tags
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TMT technology
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Main applications: Response to stimuli
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Main applications: Discovery of biomarkers
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Discovery of biomarkers
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4.3. Other quantitative techniques

“Absolute” (or precise relative quantification) with targeted MS

Other techniques (e.g., 2-dimensional differential gel electrophoresis (2D-DIGE))
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Semi/relative quantification

Quantitative “resolution”

Real “proteome” picture :
WMo =
b{qx 2 |

Precise “absolute” quantification
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Discovery and Targeted MS
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Stable isotope dilution(SID)
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Selected reaction monitoring (SRM) and mSRM (MRM)
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Choice of standards

AQUA internal standard peptides

Concatenations of tryptic Q-

peptides (QconCATs)
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Targeted method development (1)

 Choice of peptides (http://www.uniprot.org/blast/;

https://www.nextprot.org/viewers/unicity-checker/app/index.html)

e Synthesis of light and heavy peptides

e Study with MS/MS (infusion)
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http://www.uniprot.org/blast/
https://www.nextprot.org/viewers/unicity-checker/app/index.html

Targeted method development (2)

e Study with LC MS/MS (in buffer)
e Study with LC MS/MS (in sample matrix)

e Assay characterization (in sample matrix)
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Parallel Reaction Monitoring (PRM)

SRM/MRM collision cell
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Parallel Reaction Monitoring (PRM)

Peptide selection — Fragmentation — Fragment analysis E

Proteins and Collision

: Transitions
peptides : Energy
: selection 2
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preparation
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LC-MS method
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Simplified workflow
More confident in quantification results
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Main applications: Verification of biomarker discoveries
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Verification of biomarker discoveries
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2-dimensional differential gel electrophoresis (2D-
DIGE))

Pooled internal  Protein extract 1 Protein extract 2
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summary

In proteomics, quantification is key to compare different biological conditions

V24

Different quantitative techniques are used to obtain relative quantification or precise “absolute
guantification of peptides and proteins

MS is an alternative to standard biochemical methods (e.g., immuno-assays) that allows easily
multiplexing of samples and/or analytes

In the next chapters, we will see the bioinformatic tools used to process the MS data and some
concrete applications of those MS-based workflows to study proteomes in biology and clinical
research
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